Generalized Linear Models
SURV 699J
2 credits/4 ECTS
Spring 2020

Instructor
Prof. Dr. Thomas Gautschi, gautschi@sowi.uni-mannheim.de

Video lecture by Prof. Dr. Thomas Gautschi

Short Course Description
The main focus of this course lies on the introduction to statistical models and estimators beyond linear regression useful to social and economic scientists. It provides an overview of generalized linear models (GLM) that encompass non-normal response distributions to model functions of the mean. GLMs thus relate the expected mean $E(Y)$ of the dependent variable to the predictor variables via a specific link function. This link function permits the expected mean to be non-linearly related to the predictor variables. Examples for GLMs are the logistic regression, regressions for ordinal data, or regression models for count data. GLMs are generally estimated by use of maximum likelihood estimation. The course thus not only introduces GLMs but starts with an introduction to the principle of maximum likelihood estimation. A good understanding of the classical linear regression model is a prerequisite and required for the course.

Course and Learning Objectives
By the end of the course, students will...
- Understand how to appropriately translate research questions into statistical models
- Be able to apply statistical models appropriate for non-linear problems
- Estimate regression parameters using the maximum likelihood principle
- Perform hypothesis tests for regression models using the maximum likelihood principle
- Be able to identify limitations of non-linear regression models
- Be able to identify violations of the respective regression assumptions of the discussed GLMs
Prerequisites
A sound understanding of linear regression models (OLS) is required. Knowledge in linear algebra and calculus is useful.

Class Structure and Course Concept:
This is an online course using a flipped classroom design. It covers the same material and content as an on-site course but runs differently. In this course, you are responsible for watching video recorded lectures and reading the required literature for each unit and then “attending” mandatory weekly one-hour online meetings where students have the chance to discuss the materials from a unit with the instructor. Just like in an on-site course, homework will be assigned and graded and there will be a final exam at the end of the course.

Although this is an online course where students have more freedom in when they engage with the course materials, students are expected to spend the same amount of time overall on all activities in the course – including preparatory activities (readings, studying), in-class-activities (watching videos, participating in online meetings), and follow-up activities (working on assignments and exams) – as in an on-site course. As a rule of thumb you can expect to spend approximately 3h/week on in-class-activities and 9 hours per week on out-of-class activities (preparing for class, readings, assignments, projects, studying for quizzes and exams). Therefore, the workload in all courses will be approximately 12h/week. This is a 2-credit course that runs for 8 weeks. Please note that the actual workload will depend on your personal knowledge.

Mandatory Weekly Online Meetings:
Thursday, 2:00 PM EST/8:00 PM CET, starting February 27

Meetings will be held online through Zoom. Follow the link to the meeting sessions on the course website on https://www.elms.umd.edu/. If video participation via Internet is not possible, arrangements can be made for students to dial in and join the meetings via telephone.

In preparation for the weekly online meetings, students are expected to watch the lecture videos and read the assigned literature before the start of the meeting. In addition, students are encouraged to post questions about the materials covered in the videos and readings of the week in the forum before the meetings (deadline for posting questions is Thursday, 4:00 AM EST/10:00 AM CET).
Students have the opportunity to use the Zoom meeting room set up for this course to connect with peers outside the scheduled weekly online meetings (e.g., for study groups). Students are encouraged to post the times that they will be using the room to the course website forum to avoid scheduling conflicts. Students are not required to use Zoom and can of course use other online meeting platforms such as Google Hangout or Skype.

Grading

Grading will be based on:

- 7 homework assignments (49% of grade total, 7% each)
- Participation in online meetings and submission of questions demonstrating understanding of readings (10% of grade)
- Final Exam (41% of grade)

Students must get a 70% or higher in order to pass the class.

Dates of when assignment will be due are indicated in the syllabus. Extensions will be granted sparingly and are at the instructor's discretion.

Technical Equipment Needs

The learning experience in this course will mainly rely on the online interaction between students and the instructor during the weekly online meetings. Therefore we encourage all students in this course to use a web camera and a headset. Decent quality headsets and web cams are available for less than $20 each. We ask students to refrain from using built-in web cams and speakers on their desktops or laptops. We know from our experience in previous online courses that this will reduce the quality of video and audio transmission and therefore will decrease the overall learning experience for all students in the course. In addition, we suggest that students use a wire connection (LAN), if available, when connecting to the online meetings. Wireless connections (WLAN) are usually less stable and might be dropped.

Long Course Description

The main focus of this course lies on the introduction to statistical models and estimators beyond linear regression useful to social and economic scientists.
Although very useful, the general liner model (linear regression) is not appropriate if the range of the dependent variable Y is restricted (e.g., binary, ordinal, count) and/or the variance of Y depends on the mean of Y. Generalized linear models extend the general linear model to address both of these shortcomings.

The course provides an overview of generalized linear models (GLM) that encompass non-normal response distributions to model functions of the mean of Y. GLMs thus relate the expected mean $E(Y)$ of the dependent variable to the predictor variables via a specific link function. This link function is chosen such that it matches the data generating process of the dependent variable Y, therefore permitting the expected mean $E(Y)$ to be non-linearly related to the predictor variables. Examples for GLMs are the logistic regression, regressions for ordinal data, or regression models for count data. GLMs are generally estimated by use of maximum likelihood estimation. The course thus not only introduces GLMs but starts with an introduction to the principle of maximum likelihood estimation. A good understanding of the classical linear regression model is a prerequisite and required for the course.

The first two units are dedicated to an introduction to maximum likelihood estimation while the rest of the units will then discuss generalized linear models (GLM) for binary choice decisions (Logit, Probit), ordinal dependent variables, and count data (Poisson, Negative Binomial).

All units will be accompanied by homework assignments to repeat and practice the topics from the units. Any statistic program can be used to solve the homework assignments. Solutions provided by the instructor will use the statistical packages Stata and R.

Readings

Required readings will be made available on the course website:

https://www.elms.umd.edu/

Recommended readings:

Academic Conduct

Clear definitions of the forms of academic misconduct, including cheating and plagiarism, as well as information about disciplinary sanctions for academic misconduct may be found at

https://www.president.umd.edu/sites/president.umd.edu/files/documents/policies/III-100A.pdf (University of Maryland) and

Knowledge of these rules is the responsibility of the student and ignorance of them does not excuse misconduct. The student is expected to be familiar with these guidelines before submitting any written work or taking any exams in this course. Lack of familiarity with these rules in no way constitutes an excuse for acts of misconduct. Charges of plagiarism and other forms of academic misconduct will be dealt with very seriously and may result in oral or written reprimands, a lower or failing grade on the assignment, a lower or failing grade for the course, suspension, and/or, in some cases, expulsion from the university.

Accommodations for Students with Disabilities

In order to receive services, students at the University of Maryland must contact the Accessibility & Disability Service (ADS) office to register in person for services.
Please call the office to set up an appointment to register with an ADS counselor. Contact the ADS office at 301.314.7682; https://www.counseling.umd.edu/ads/.

Students at the University of Mannheim should contact the Commissioner and Counsellor for Disabled Students and Students with Chronic Illnesses at http://www.uni-mannheim.de/studienbueros/english/counselling/disabled_persons_and_persons_with_chronic_illnesses/.

Course Evaluation

In an effort to improve the learning experience for students in our online courses, students will be invited to participate in an online course evaluation at the end of the course (in addition to the standard university evaluation survey). Participation is entirely voluntary and highly appreciated.

Class Schedule

Please note that assignments and dates are subject to change. Information (e.g., articles and assignments) posted to the course website supersedes the information noted here.

Daylight saving time begins in the US on March 08, 2020 and clocks are turned forward 1 hour. Daylight saving time begins in Europe on March 29, 2020. Therefore, look carefully at the times of meetings and deadlines!

Week 1: Maximum Likelihood Estimation

Estimator and Variance

Video lecture: available Thursday, February 20, 2020

Online meeting: Thursday, February 27, 2020, 2:00 PM EST/8:00PM CET

Homework assignment 1: due Monday, March 02, 2020, 2:00 PM EST/8:00 PM CET

Required readings:

Verbeek (2008) Ch. 6.1

Week 2: Maximum Likelihood Estimation

Specification Tests, Model Fit, and Numerical Optimization

Video lecture: available Thursday, February 27, 2020
Online meeting: Thursday, March 05, 2020, 2:00 PM EST/8:00 PM CET
Homework assignment 2: due Monday, March 09, 2020, 3:00 PM EDT/8:00 PM CET

Required readings:
Verbeek (2008) Ch. 6.2
Greene (2008) Ch. 16.6.1-16.6.3

Week 3: Binary Choice Models
LPM, Binary Choices, Logit and Probit Models
Video lecture: available Thursday, March 05, 2020
Online meeting: Thursday, March 12, 2020, 3:00 PM EDT/8:00 PM CET
Homework assignment 3: due Monday, March 16, 2020, 3:00 PM EDT/8:00 PM CET

Required readings:
Verbeek (2008) Ch 7.1
Wooldridge (2008) Ch. 17.1

Week 4: Binary Choice Models
Coefficient Interpretation, Statistical Inference, and Goodness-of-Fit
Video lecture: available Thursday, March 12, 2020
Online meeting: Thursday, March 19, 2020, 3:00 PM EDT/8:00 PM CET
Homework assignment 4: due Monday, March 23, 2020, 3:00 PM EDT/8:00 PM CET

Required readings:
Verbeek (2008) Ch. 7.1
Long (1997) Ch. 3.7-3.8

Week 5: Models for Ordinal Data
Ordered Outcomes, Modelling Strategy, Identification, and Estimation
Video lecture: available Thursday, March 19, 2020
Online meeting: Thursday, April 02, 2020, 3:00 PM EDT/8:00 PM CET
Homework assignment 5: due Monday, April 06, 2020, 2:00 PM EDT/8:00 PM CEST

Required readings:
- Verbeek (2008) Ch. 7.2.1-7.2.3
- Wooldridge (2002) Ch. 15.10
- Long (1997) Ch. 5.1-5.2

Week 6: Models for Ordinal Data

Inference, Threshold and Coefficient Interpretation, Outcome Probabilities

Video lecture: available Thursday, April 02, 2020

Online meeting: Thursday, April 09, 2020, 2:00 PM EDT/8:00 PM CEST

Homework assignment 6: due Monday, April 13, 2020, 2:00 PM EDT/8:00 PM CEST

Required readings:
- Verbeek (2008) Ch. 7.2.1-7.2.3
- Long (1997) Ch. 5.5

Week 7: Models for Count Data

Poisson Distribution, Generalization, and Estimator

Video lecture: available Thursday, April 02, 2020

Online meeting: Thursday, April 09, 2020, 2:00 PM EDT/8:00 PM CEST

Homework assignment 7: due Monday, April 20, 2020, 2:00 PM EDT/8:00 PM CEST

Required readings:
- Verbeek (2008) Ch. 7.3;
- Wooldridge (2008) Ch. 17.3
- Cameron and Trivedi (1998) Ch. 3.1, 3.2.1, 3.5.1

Week 8: Models for Count Data

Variance, Overdispersion, and Negative Binomial

Video lecture: available Thursday, April 16, 2020

Online meeting: Thursday, April 23, 2020, 2:00 PM EDT/8:00 PM CEST
Required readings:
Verbeek (2008) Ch. 7.3

Recommended readings:
Cameron and Trivedi (1998) Ch. 3.2.2, 3.3.1, 3.3.3, 3.4, 4.7

Final Exam
Available: April 17, 2020
Due: May 06, 2020, 2:00 PM EDT/8:00 PM CEST

Note: Student access to the course website will be revoked four weeks after the final exam.