Instructor: Jörg Drechsler
Missing data are a common problem which can lead to biased results if the missingness is not taken into account at the analysis stage. Imputation is often suggested as a strategy to deal with item nonresponse allowing the analyst to use standard complete data methods after the imputation. However, several misconceptions about the aims and goals (isn't imputation making up data?) of imputation make some users skeptical about the approach. In this course we will illustrate why thinking about the missing data is important and clarify which goals a useful imputation method should try to achieve (and which not).
By the end of the course, students will…
Grading will be based on:
2 online quizzes (worth 20% total)
2 homework assignments (40% total)*
Participation in the weekly online meetings, engagement in discussions during the meetings and/or submission of questions via e-mail (10% of grade)
A final online exam (30% of grade)
Dates of when assignment will be due are indicated in the syllabus. There will be a grace period for late assignments (not for quizzes), but late assignments will be penalized according to the following rules:
1 day late: 10% off
2 days late: 25% off
3 days late: 50% off
4+ days late: no credit
Students should be familiar with generalized linear models and basic probability theory. The statistical software R will be used for illustrations and for (some of) the homework assignments. Thus, basic knowledge of R is required to be able to complete the assignments
Readings:
Carpenter, J. and Kenward, M. (2012). Multiple imputation and its application. New York: John Wiley & Sons
Groves, R.M., Fowler, F.J., Couper, M.P., Lepkowski, J.M., Singer, E., Tourangeau, R. (2004) Survey Methodology, Wiley, Chapter 6
Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data (2nd ed.), New York: John Wiley & Sons, Sections 3.1, 3.2, and 3.4.
Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data (2nd ed.), New York: John Wiley & Sons, Chapter 4.
Brick, J.M. and Kalton, G. (1996). Handling missing data in survey research. Statistical Methods in Medical Research, 5, 215-238. Sections 1 and 3.1.
Carpenter, J. and Kenward, M. (2012). Multiple imputation and its application. New York: John Wiley & Sons, Chapter 2.1 to Chapter 2.4
Rubin, D.B. (1986). Basic ideas of multiple imputation for nonresponse. Survey Methodology, 12, 37-47.
Weekly online meetings & assignments:
If you want to dive even deeper into these topics, we recommend to sign up for the follow-up course SURV726 Multiple Imputation - Why and How.